Web Based Camera Navigation for Virtual Pancreatic
cancer surgery: Whipple Surgery Simulator (VPanSS)

Doga Demirel, Alexander Yu, Tansel Halic, Sinan Kockara

Computer Science Department
University of Central Arkansas

Abstract— This study presents an preliminary design and
development of a web based real-time virtual laparoscopy
simulation for pancreticoduodentomy (Whipple Procedure). In
this early stage, we primarily focused on virtual camera
navigation to improve hand-eye coordination of a surgeon.
Pancreticoduodentomy, pancreatic surgery, is one of most
challenging laparoscopic surgeries. We examined whole Whipple
procedure to identify its major tasks for the design of a virtual
training simulator. Based on the tasks analysis, we found that one
of the major challenges in Whipple surgery is accessing to the
pancreas. Therefore, identification of the tumorous regions and
tumor spread around pancreas become complicated. Surgeons
need to carefully navigate laparoscopic camera to the pancreas
and nearby tissues and locate the regions affected by the tumor.
However, cameras navigation in laparoscopy is intricate due to
different abdominal entry locations of camera and surgical tools.
Therefore, we developed a real-time, web based, surgical
simulation training platform for camera navigation task for
Whipple procedure. The goal is to provide accessible, portable,
ubiquitous, hardware independent training simulation platform
unlike any other surgical simulators. In VPanSS, we developed
and integrated a novel contact detection algorithm to
continuously determine the camera-organ/tissue contacts during
the laparoscopic camera navigation. We tested real-time
performance of VPanSS on various platforms to understand its
effectiveness and applicability.

Index Terms— Computer graphics, Medical
Internet, Cancer, Tumors

simulation,

I. INTRODUCTION

This paper describes the preliminary work on the design
and development of virtual reality based surgery simulation for
pancreatic cancer removal. Having one of the lowest survival
rates among all cancers, pancreatic cancer is one of the
deadliest types. Pancreatic cancer surgery has a low survival
rate [1]. It is one of the most complex surgeries to carry out
successfully. The pancreas is difficult to reach because of its
location that is in the abdomen and posterior to the stomach,
anterior to the spine. Anatomical location of pancreas makes
any surgical treatment difficult. Its location also makes
challenging to detect the tumor growth with basic medical
examination. The pancreatic cancer does not cause any
symptoms until the tumor grows large. Pancreatic cancer can
also grow into the nearby organs and tissues making it even
more deadly. This increases the complexity of any surgical
intervention of the tumor removal. It is shown that when
pancreatic operation is performed by surgeons with minimal

experience, it has three times higher mortality rate than
operation applied by experienced surgeons [2]. There is an
apparent need for a risk-free training platform to increase
surgeons’ experiences.

Only 10% to 20% of the people that are diagnosed with
pancreatic cancer are suitable for a surgery [3]. Before a
surgeon makes a decision about the patient’s suitability for the
surgery, s/he will examine the size of the tumor, location in the
pancreas and whether the cancer has grown into adjacent
tissues, lymph nodes, blood vessels or any other part of the
body. Although advancements in current imaging techniques
improve the assessment of the tumor’s spread, they are often
not adequate. During the procedure, the surgeon’s evaluation
and exact identification of the regions is needed. The surgery
necessitates dynamic decision making which is specific to the
patient [4]. This increases the level of complexity of the
surgery.

There are 3 common curative procedures performed for the
removal of pancreatic cancer. The first curative procedure is
called the distal pancreatectomy. It is the operation that
removes various parts of the pancreas such as the tail, or in
some cases the tail and a part of the body and the spleen of the
pancreas. Distal pancreatectomy has only a mortality rate of
5%, and provides pain relief for 80% of the patients [3].
Another curative procedure is called the total pancreatectomy
which removes the entire pancreas and the spleen [5]. Last and
the most common one is called the pancreatoduodenectomy or
the “Whipple.” “Whipple” procedure is one of the most risky
and demanding operations for surgeons and patients. In this
procedure, the head of the pancreas, the gallbladder, the
duodenum and in some cases the body of the pancreas are
removed. After the removal of infected parts is completed, the
surgeon reconnects the remaining pancreas and digestive
organs. This connectivity allows pancreatic enzymes, bile, and
stomach contents to flow into the small intestine during
digestion.

The study revealed that patients undergo the “Whipple”
procedure has better recovery rate when the surgery is
performed at a hospital that performs the procedure around
twenty times a year [2]. The study states that when the
“Whipple” procedure is conducted in a high-volume hospital
(16 or more procedures a year) with experienced surgeons, the
mortality rate of surgical complications is recorded as 3.8%.
On the contrary, when the surgery is performed in a low-
volume (less than 16 procedures a year) hospital with less

experienced surgeons the rate quadruples to 16.3% [2]. With
that percent difference, it is one of the highest among other
cancers. The experience of the surgeons in hospital can also
affect the length of the patient stay. Performed in a high
volume hospital the length of stay is 18.2 days, in a low
volume hospital the number increases to 23.6 days [5].

Pancreas surgery requires highly experienced and skilled
surgeons. Considering the complexity and post-surgery
complications of the surgery, the patient recovery and lifespan
are highly correlated with the skills set and knowledge of the
surgeons. As the statistics reveals high mortality amongst the
novice surgeons, the demand in risk free training is acute.
However, there is no available risk-free training platform for
surgeons that allow them to enhance their skill and gain
experience on sub-tasks of the procedure. The conventional
trainings such as practicing on cadavers or animals are not
sufficient for complex surgery like pancreticoduodentomy [6].
Moreover, performing on real patients entails high risk.
Therefore, we analyzed the most critical tasks in the pancreatic
surgery and developed preliminary virtual training platform.
The major contributions of this study are two-fold; one is
detailed task analysis of pancreticoduodentomy and second is
the web based virtual camera navigation task to improve hand-
eye coordination of surgeons, which is noted as one of the most
critical skills for surgeons in the “Whipple” surgery.
Furthermore, we presented performance tests to convey the
effectiveness simulator on various platforms.

Il. TASK ANALYSIS

We analyzed tasks of the “Whipple” procedure [7, 8, 9].
Every task was detailed and sub-tasks were derived. Out of the
3 curative procedures, “Whipple” surgery is the most common
operation to treat pancreatic cancer. The range of the “Whipple”
procedure is between 370-660 minutes [7]. In table 1, the 10
major tasks are shown.

TABLE |
TEN MAJOR TASKS FOR PANCRETICODUODENTOMY
Step Sub Task

1 Stabilizing the Stomach
Freeing 1% and 2" part of Duodenum
Creating a Passage
Freeing 3™ and 4™ part of Duodenum
Cystic Artery Removal
Jejunum
Removing the Tumor
Pancreaticojejunostomy

Hepaticojejunostomy
Duodenojejunostomy

© 00 N o o~ W N

=
o

Figures (Fig. 1a, 1b, 1c, 1d and 1e) show the task analysis
trees for the “Whipple” procedure. Before surgery starts a
laparoscopic telescope is inserted to check the surrounding
organs for cancer [8]. The patient is set up for the laparoscopic
surgery with 4 holes, one for camera, one for left and one for
right hand working and one for retraction [9].

A. Stabilizing the Stomach and Freeing 1st and 2nd part of
Duodenum

The operation starts by laparoscopic forceps grasping the
greater curvature of the stomach and retracting it upward (Fig.
1a) [10]. When the stomach is out of the way for the surgery,
laparoscopic scissor blades are inserted behind duodenum to
free the 1%t and the 2™ part of duodenum (Fig. 1a).

Insert
Forceps
Apply
Stabilizing the Ll Stomach Forceps
Stomach
Retract
Upward
Insert
Scissor
Blades
ing 15t Maneuver
Fr;izngarlt ;}nd | Behind Scissors
p Duodenum around
Duodenum

Use
Sricenre

Fig. 1a Subtasks stabilizing the stomach and freeing 1% and 2™ part of
duodenum in the hierarchical task analysis tree for pancreticoduodentomy

B. Creating a Passage and Freeing 3rd and 4th Parts of
Duodenum

Linear stapler is a cutting tool used to remove the cancer
part of the pancreas. A passage will be created to move the
linear stapler to the pancreas by dividing the portion of the
greater omentum that extends from the transverse colon to the
greater curvature of the stomach by the linear stapler (Fig. 1b)
[11]. The muscle that connects the duodenum to the diaphragm
also known as the suspensory muscle of duodenum is cut with
Laparoscopic scissor blades to free the parts of duodenum (Fig.
1b) [8].

C. Cystic Artery Removal and Jejunum

When the duodenum is freed, the right gastro-omental vein
and the right gastric vessels are exposed; using a hook cautery
these vessels are divided and then sutured (Fig. 1c) [12].The
cystic artery can be located in the hepatoduodenal ligament.
After finding the cystic artery, it is clipped, sutured and divided
(Fig. 1c) [10]. The cystic duct is then separated from the
fibrous tissue using a Laparoscopic knife. After freeing the
duodenum, next step is to cut an incision across the jejunum
using a linear gastrointestinal stapler (Fig. 1c) [10]. The
incision is then clamped and sutured.

Insert Linear
Stapler
. Apply Linear
Creating a Greater S
tapler
Passage f— Omentum P
Insert Clipper

Aoplv Clips

Insert
Scissor
Blades

Suspensory
muscle of

Cut
Suspensor
v muscle

Freeing 3 and
4" part of
Duodenum

Insert Hook
Cautery

Apply Hook

Right Cautery

Gastroepiploic
and Right Gastric
Vessels

Insert
Needle

Suture
Vessels

Fig. 1b Subtasks creating a passage and freeing 3" and 4" part of duodenum in
the hierarchical task analysis tree for pancreticoduodentomy.

D. Removing the Tumor and Pancreaticojejunostomy

At this point in the procedure the pancreas is visible.
Before removing the tumor of the pancreas, a small surgical
drain is inserted under the neck of the pancreas [10] which is
removed 4 days after the (Fig. 1d) [11]. Before, removing the
tumor, surgeon needs to perform careful examination to assess
the tumor spread. This requires expert camera navigation skills.
Removal of the tumor at the pancreas is done by an
electrocautery (Fig. 1d) [10]. Next part in the procedure is to
create a pancreaticojejunostomy, connecting the left over
pancreas to the jejunum (Fig. 1d). This is performed by taking
the inner part of the pancreas that is left behind from the
electrocautery. Then the inner part of the pancreas is sutured to
the inner part of the jejunum (Fig. 1d) [10].

E. Hepaticojejunostomy and Duodenojejunostomy

The outer part of the pancreas and the outer part of jejunum
is sutured together. A hepaticojejunostomy is then created by
suturing the hepatic duct to the jejunum (Fig. 1e) [10]. The last
step in the surgical procedure is to create a
duodenojejunostomy. This is performed by taking the outer
layer of the jejunum and suturing it to the first portion of the
duodenum (Fig. 1e) [10]. Next, an incision into the intestine
and the jejunum is performed. After duodenojejunostomy,
gallbladder needs to be removed due to the fact that bile duct is
attached to the jejunum. The bile flows from bile duct to

jejunum and gall bladder no longer stores bile so the function
to store the bile’s is lost (Fig. 1e).

Next section introduces implementation of surgical
simulation development components of VVPanSS.

Insert Clipper

Cystic Artery Cystic Apply Clips
Removal Artery

Insert Knife

Apply Knife

Insert
Linear
Stapler

Apply
Linear
Stapler

Apply
Needle

Jejunum Jejunum

Suture
Jejunum

Insert
Clipper

Fig. 1c Subtasks cystic artery removal and jejunum in the hierarchical task
analysis tree for pancreticoduodentomy.

Detect Tumor

Insert Surgical
Drain

Apply Surgical

Removing the .
Drain

Tumor Pancreas

Insert
Electocautery

Apply
Electrocautery

Insert
Needle

Inner part of
Pancreas

Suture to the
Inner part of
Jejunum

Pancreaticojejunostomy

Insert
Needle

Outer part of
Pancreas

Fig. 1d Subtasks removing the tumor and pancreaticojejunostomy
in the hierarchical task analysis tree for pancreticoduodentomy.

Suture to the
Inner part of
Jejunum

I11. VPANSS DESIGN

Navigation of the laparoscopic camera needs to be
performed manually and requires high cognitive function and
visuospatial skills [13]. These skills are essential for navigating
the laparoscopic camera in a complex environment like human
body. After locating the pancreas, the surgeon needs to re-
examine the pancreas and the adjacent tissues to ensure that the
tumor has not spread. For this, surgeons need to navigate
around and explore the pancreas for any spread. This task
requires advanced skills for camera manipulation to find
correct position and orientation as indicated in section E.

In order for surgeons to practice navigation of the camera,
we created a virtual abdominal environment for a preliminary
task of reaching the pancreas. A novel collision detection
algorithm called Balls Hierarchy by Kockara et al. [14] has
been implemented and integrated in to the M-SoFMIS. T1-
SoFMIS, Halic et al. [15], is a framework developed for
creating 3D surgical simulations in a browser environment.
Next sections will introduce the architecture and components
of VPanSS.

Insert Needle

Hepaticojejunostomy | ngittlc

Suture to the
Jejunum

Insert Needle

Outer part of
Jejunum

Suture to the
first portion
of Duodenum

Duodenojejunostomy

Insert Needle

Suture to the
Intestine

Inner part of
Jejunum

Fig. 1e Subtasks hepaticojejunostomy and duodenojejustomy in the
hierarchical task analysis tree for pancreticoduodentomy

A. Simulation Components in VPanSS

Following figure (Fig. 2) shows the process flow and the
components of the VPanSS; 1.Razer Hydra (motion controller),
2.Collision Detection Module, 3.WebGL Rendering, 4.3D
Import module for JSON files. Razer Hydra was integrated to
capture six degrees motion for the laparoscopic camera
movement. The movement of the tool is passed into collision
detection module. In collision detection module, the motion of
the camera is checked against the virtual organs before the
scene is drawn. WebGL component is essential to rendering
3D models in web browsers. We load the geometry of the
organs by using JSON files. The import and export module of
M-SoFMIS is used for loading JSON file for each virtual organ
along with their texture data. The geometry is both used by
rendering and collision detection module in the VVPanSS.

Fig. 2 VPanSS Components

The figure (Fig. 3) illustrates the browser plug-in developed for
integrating Razer Hydra motion controller in to VVPanSS. The
Razer Hydra provides translational and orientation (such as
pitch, roll and yaw) motion with magnetic tracking. For
interfacing the Razer Hydra with our simulator, a plug—in is
necessary for native access to the hardware in each and every
simulation execution frame as web browsers and JavaScript do
not have access to direct hardware control. The figure (Fig. 3)
represents the plug-in architecture for any device including
force feedback devices.

The Plug-in is initialized only once by web browser during
the start-up of the simulation. In this phase, Web-browser
directly calls device specific initialization routines. Once the
plug-in is initialized, all functions and plug-in properties can
then be used through a JavaScript plug-in object. During
VPanSs, the hardware information can be directly accessed
and device runs separately at a different thread. This allows
achieving high update rates for the plug-in.

Web Browser Force

Device
Specific

Plug-in

Buffers

Device specific
info;rotation,
ion, data

query etc.

Fig. 3 Plug-in architecture.

B. [1-SoFMIS

The framework [M1-SoFMIS [15] has been used for the
development of VPanSS. This framework is entirely built with
JavaScript and WebGL allowing real-time, hardware
independent, portable and accessible 3D visualization platform
without any installation. The framework requires only web
browsers. The rendering routine utilizes WebGL for realistic
rendering of anatomical structures with shaders using multiple
maps such as; bump, specular, displacement and alpha.
WebGL is based on OpenGL Embedded Systems 2.0 and
allows direct access to the graphical processing unit (GPU)
within a web browser. This allows efficient generation of 3D
interactive applications on any platform capable of running a

web browser. The framework is built with JavaScript, and as a
result objects are not tied to any browser specific
implementation. This provides true platform independence.
Implementation of the framework [M-SoFMIS is completely
based on prototyping. With prototyping, objects or functions
can be augmented to create new objects. This allows design
and implementation of object oriented hierarchy that is used
throughout the framework (Fig. 4) [15].

M- SOFMIS uses JSON (JavaScript Object Notation) format
to import 3D geometry. This standardized format
makes importing and parsing files straightforward. In addition,
JSON is human readable format and allows extensions.
Any .OBJ or .3DS 3D object files can easily be converted to
JSON format. We implemented our own module for this
conversion from .OBJ to JSON format (Fig. 4).

Event

Simulator Viewer Module CollisionDetection Interfaces
dul ~Shaders Module :;:knwku
~Mass-Spri and'rigid Tools | -Deta aquisation devics
Position Based ~Frame buffer objects | _cofiision groups s
: .
-Heat Transfer

Fig. 4 T1-SoFMIS modules [15]

C. Collision Detection

Contact/Collision detection is an essential part of VPanSS
during the camera navigation task. Virtual camera is
manipulated with surgeon’s hand motions that are tracked with
Razer Hyrda game controller. During the navigation task,
camera penetration to virtual organs or tissues must be avoided
in real-time at all times. For this real-time collision detection
purpose, a soft kinetic data structure called Balls Hierarchy was
utilized to detect any contact of virtual camera (Fig. 6). The
employed soft kinetic data structure, by Kockara et. al[14],
dynamically tracks proximities of moving objects and those
objects’ deformations. The technique handles both broad and
narrow phase collision detections, where a spanner tree of
hierarchy is being created for each vertex of the 3D organs’
meshes and dynamically updated in the case of deformations.
Having dynamic trees minimizes recalculation time for
deformable bodies.

Construction of the Balls Hierarchy (BH) starts with a
random node. It checks if there are any other nodes within the
minimum distance, minDistance = (r* &'*'). In the formula, r
represents the preset radius, & represents the expansion ratio,
which must be greater than 1. level refers to the level in the
hierarchy. Notice that level expands exponentially from lower
levels to higher levels. This provides multi resolution behavior
of proximities. Thus, the hierarchy provides early rejection
mechanism for far away objects. However, once objects come
closer, finer representation of the objects are hold in lower

levels. Bounding volume hierarchies are one of the most
effective methods for collision detection in virtual scenes.
However, they are not suitable for deformable objects’
collision since they require excessive hierarchy update
operations. This makes them unsuitable for deformable bodies’
collisions detections. BH overcomes this problem.

Scme=’

Level3 Leveld

Fig. 5 Hierarchy construction steps

Initially, all the nodes are placed under the level 0 that is
specified as the root; no other nodes should have nodes within
the minimum distance. By using the minimum distance
formula, minDistance, all nodes are included at the level 1
either as a parent or as a child node. The same step is repeated
for all root nodes for the next levels. Parent nodes are grouped
into larger hierarchies until one root node is left. Any change in
the positions of the nodes requires an update (e.g. promotion or
demotion) in the hierarchy tree. Promotion is leveling up a
point whereas demotion is leveling down a point. For
deformable structures, only the corresponding section of the
BH for moving nodes are recomputed (promoted or demoted)
as opposed to all points in the hierarchy. This reduces the
computation complexity from n to log (k) where k is the
number of vertices affected by motion (e.g. deformation). This
behavior makes the BH highly dynamic and adaptive to
deformations.

The figure (Fig. 5) illustrates BH construction steps for 10
points. In this illustration, hierarchy is consisting of 4 levels.
Each level of the hierarchy is represented in different colors;
black, red, blue, and green colors respectively. Dashed circles
represent radius-covering at the level. In the first level, original
data points exist with minimum radius r. Since minimum
distance between closest color pairs is 1, r is assigned as 1. As
seen from the first level, since no other ball center is covered
by any other ball, all survive (exist in the level). In the second
level, only 5 points survive, since other points are covered by
survivors with radius in the second level, R2. Non-survivor
points become children of survivors. This relation is
represented by child edges which are illustrated as steady black
lines. R2 is expanded from minimum radius by expansion ratio

(&); thus, R2 = r & Superscript 1 represents level difference
between level 2 and level 1. Steady red lines in the second
level represent neighbor edges which represent neighbor
relations between any two survivor points (N (V') = {u'eB;, [u'V/|
< yréty). Two survivors are neighbors if and only if distance
between them is smaller than or equal to the neighbor
coefficient (») times radius at the level (R2). In the third level,
there exist only three balls (blue) with radius R3= &r, and a
single non-survivor which becomes a child. Now, there are 3
neighbors (blue lines) in the third level. In level 4, there is only
a single survivor (green) with two children. As indicated, this
survivor is called root and covers all existing points. Notice
that in order a non-survivor point to become a child of a
survivor point, it needs to be a neighbor of the survivor point in
the previous level. Once hierarchy tree is constructed, balls
hierarchy keeps hierarchical representation of approximate
shortest paths among all the existing points. Hierarchy
construction time is O(nlogn) where n in number of vertices in
3D models. Hierarchy update for deformations takes O(log n)
if all the vertices are moving. However, for local deformations
computation takes a constant time O(log k) where k is the
number of nodes moved during deformation. Algorithm is
summarized with pseudo codes in Table-2, Table-3 and Tablet-
4yrespe9tively.

FigG Scene tool-tissue interaction with colliding point visualize:

TABLE 2 COLLISION DETECTION PSEUDO CODE

CombineNodes(x,y)
begin
mark all nodes in Level-1 unvisited
for every unvisited Node x in Level-1
mark x as visited
for every unvisited Node y in Level-1
if distance(x,y) < radius
CombineNodes(x ,y), place in Level
if there are more than one node in this level
BuildNextLevel()
end

Check Collision
Outputs:

BH1

BH2

begin
start at highest level in bhl and bh2
while Nodes collide
reduce level of hierarchy with more levels
if level ==
return COLLISION, [1-SoFMIS calculates
the physics based response
return NOCOLLISION
end

TABLE 3 UPDATE PROCEDURE PSEUDO CODE

Update Procedure
Outputs:
Point x, point to be changed
BH, Balls hierarchy
Methods:
Insert(point, BH), inserts a point into the BH
UpdateAllChildren(root, BH), performs the update
procedure on all children of a root node
begin
Remove Point x from BH
if Point x is root
UpdateAllChildren(x,BH)
Insert(Point x, BH)
else
Insert(Point x)
end

Building the hierarchy
BUILD H
Outputs:
data, points
R, radius at this Level
BH, Balls Heirachy
Node, has one root and any amount of child points
Methods:
BuildNextLevel(),builds next Level of hierarchy
begin
for every point in data
mark point as a node root and place in BH level @
BuildNextLevel()
end

Building the Next Level

Outputs:
Level-1, structure of points in previous Llevel
Node, has one root and any amount of child points

Methods:
BuildNextLevel(), builds next Level of hierarchy

TABLE 4 INSERT PROCEDURE PSEUDO CODE

Insert Procedure

Outputs:
Point x, point to be changed
BH, Balls hierarchy

Methods:
Distance(point,point), gives the distance between
2 points
Add(root, point), adds x as a child node to root,
also if any children of root are root, nodes will
attempt to add x to them

Variables:
Level, every levels has root nodes and radius
begin
level = Highest level in BH
for root nodes in level
if distance(root, x) < level.radius
add(root, x)
else
make x root node and add to BH
end

In this implementation, the hierarchical structure is used.
Instead of checking every point, BH checks for just the parent
of the level. When a collision is not detected on the top level,
BH early rejects collisions so that broad phase collision
detection is handled. If there is a collision at the bottom level,
I1-SoFMIS generates a proper physics based response for
deformable bodies. This corresponds to narrow phase collision
detection.

D. VPanSS Benchmark

Three different computers and three different web-browsers
were used to collect the Frame per Seconds (FPS) for rendering
and collision to understand performance of VPanSS. The
computers had the following specifications; the first desktop
computer, referred as COMP1, had an Intel i7-3820 CPU with
3.60 GHz, an 8 GB memory and GeForce GTX 550 Ti version
311.06 graphics card with Windows 8. The second desktop
computer, referred to COMP2 had Intel i7-3770 CPU with 3.40
GHz, a 16 GB memory and GeForce GT640 version 327.23
graphics card with 64-bit, Windows 7. The third laptop
computer, referred to COMP3, had Intel Core i7-3630QM CPU
with 2.40 GHz, a 8GB memory and GeForce GTX660M
version 334.89 graphics card with 64-bit, Windows 7
Operating System. Three major web browsers; Mozilla Firefox
26.0, Google Chrome 31.0.1650.63m and Chromium
35.0.1865.0(254057) used in benchmark data. The critical
components in navigation tasks are contact detection module
and visual rendering. The performance data was collected over
a 60 seconds time period, and then the average FPS was
computed. Three different tests were performed. The first test
was performing collision detection without rendering any
objects. This was performed to identify collision detection
performance. The second test was to measure the rendering
performance for the visual scene. The third test was collision
detection and rendering of the scene at the same time to
determine the simulation overall performance. In the scene,
there were 13 objects that consist of 68,883 vertices and 22,961
triangles. In IM-SoFMIS, in order to get accurate frame rates,
the timer interval was set to 1 millisecond to get frame rates at
~1000Hz, instead of 16ms(60hz).

The figure (Fig. 7a) shows the FPS calculated when only
the collision was being detected. Although all FPS are nearly
comparable, in all cases Chromium was superior and Firefox
was lower. COM2 had better benchmarks in collision detection
without rendering due to the fact that the CPU was superior to
COM1 and COMS.

The figure (Fig. 7b) shows the FPS calculated when only
the scene is being rendered without collision detection module
enabled. The data was collected when the scene was rotating
among the Y-axis. In all the cases, Google Chrome was
superior, Firefox was lower. Unlike the previous case,
Chromium’s rendering performance exhibits performance drop
around 50-100 FPS with respect to Chrome browser. With the
better graphics card, COM1 was faster amongst all browsers in
rendering test.

The figure (Fig. 7c) shows the FPS calculated when
VPanSS was working with both rendering and collision
detection at the same time. In all cases, Firefox had lowest and

Chromium had highest rates. COM1 and COM2 had better
benchmarks compared to COM3, which was as expected due to
its lower hardware specification in regards to the others.

Test 1: Collision

100 80 1
80 8 /04 677 68 9
o~ 60
[a T8
Y- 40
20
0
comMm1 com2 com3
Name of Computers
B Chrome Chromium ® FireFox
Fig.7a Frame per second when only the collision is being detected
Test 2:Rendering
1000 945.0
8051 764.1
800
6103 cias 665.9 <7
0 600 :
T 400 354.7
200 I
0
comMm1 com2 COoM3
Name of Computers
B Chrome Chromium ® Firefox

Fig. 7b Frame per second when only the scene is being rendered and
movement without collision is being simulated

In all test cases, Firefox attained the lowest performance on
three different computers. As observed from the data,
performance can noticeably vary with different browser
engines. Therefore, we are working on complete multithreaded
and GPU based versions for collision detection to take load off
of the main thread of the web application [15].

Test 3: Rendering and Collision Detection

80 66.5 68.1

o, 629
€0 47.1 446 -1 P
£ 40 '
[N
0
com1 com2 com3

Name of Computers

B Chrome Chromium H Firefox

Fig. 7c Frame per second when the simulator was working with rendering
and collision detection

E. Camera Navigation Task

As seen in figure (Fig. 8), a navigation task was developed
aiming at increasing the visuospatial and handling skills of
surgeons. In this task, surgeons are asked to navigate to the
pancreas via manipulating a laparoscopic virtual camera. First
goal of the tasks is to locate and find the virtual flashing sphere
randomly positioned at pancreas. In the second task, the
surgeons are asked to navigate camera and get close to the
sphere as much as possible while avoiding any collisions to the
organs. The amount of contacts between virtual camera and
organs is recorded until that task is completed. The task score
is computed based on the number of collisions that would
reflect the proficiency level of the surgeon.

«- ca

—omm

Fig. 8 Flashing target in the simulator

IV. CONCLUSION

“Whipple” procedure is a complicated surgery with most
subtasks that affiliate with adjacent organs that could take up to
11 hours [8]. In such a complex surgery, complications could
easily develop if the surgeon lacks enough skills and
experience. It is revealed that surgeons and hospitals with less
experience have almost four times more operative mortality
rate compared to expert surgeons. Although gaining experience
is very critical, there is no available training platform for
pancreas surgery. Therefore, we developed VPanSS; a
preliminary pancreas virtual simulation. VPanSS has the
camera navigation task where the surgeons could practice and
get their training without any risk. VPanSS is a platform
independent, portable, accessible real-time web based
simulation. We tested our simulation components on three
different computers using Chrome, Chromium, and Firefox
browsers to verify its portability and accessibility. Test results
indicate that simulation successfully achieves real-time rates
with standard computers. At present VPanSS is a training
platform but it could be also used to assess the surgeons’ skill
levels for the camera navigation in “Whipple” surgery.
Ongoing development is focused on validation of the simulator
with different surgeons and to get their objective and subjective
feedback.

REFERENCES

[1]J. F. Tseng, P. W. Pisters, J. E. Lee, H. Wang, H. F. Gomez, C. C. Sun,
and D. B. Evans, “The learning curve in pancreatic surgery,” Surgery, vol.
141, no. 5, pp. 694-701, 2007.

[2] J. D. Birkmeyer, A. E. Siewers, E. V. Finlayson, T. A. Stukel, F. L. Lucas,
1. Batista, H. G. Welch, and D. E. Wennberg, “Hospital volume and
surgical mortality in the United States,” N. Engl. J. Med., vol. 346, no. 15,
pp. 1128-1137, 2002.

[3] P. Watanapa and R. C. N. Williamson, “Surgical palliation for pancreatic
cancer: developments during the past two decades,” Br. J. Surg., vol. 79,
no. 1, pp. 8-20, 1992.

[4] B. W. Kuvshinoff and M. P. Bryer, “Treatment of resectable and locally
advanced pancreatic cancer,” Cancer Control, vol. 7, no. 5, pp. 428-436,
2000.

[5] J. A. Sosa, H. M. Bowman, T. A. Gordon, E. B. Bass, C. J. Yeo, K. D.
Lillemoe, H. A. Pitt, J. M. Tielsch, and J. L. Cameron, “Importance of
hospital volume in the overall management of pancreatic cancer.,” Ann.
Surg., vol. 228, no. 3, p. 429, 1998.

[6] U. Giger, |. Frésard, A. Hafliger, M. Bergmann, and L. Kréhenbihl,
“Laparoscopic training on Thiel human cadavers: a model to teach
advanced laparoscopic procedures,” Surgical endoscopy, vol. 22, no. 4,
pp. 901-906, 2008.

[7] A. A. Gumbs, B. Gayet, and J. P. Hoffman, “Laparoscopic Whipple
procedure with a two-layered pancreatojejunostomy,” Surg. Endosc., vol.
25, no. 10, pp. 3446-3447, 2011.

[8] M. Gagner and M. Palermo, “Laparoscopic Whipple procedure: review of
the literature,” J. Hepatobiliary. Pancreat. Surg., vol. 16, no. 6, pp. 726—
730, 2009.

[9] C. Palanivelu, R. Shetty, K. Jani, K. Sendhilkumar, P. S. Rajan, and G. S.
Maheshkumar, “Laparoscopic distal pancreatectomy,” Surg. Endosc., vol.
21, no. 3, pp. 373-377, 2007.

[10] Cameron, J. L., & Sandone, C. “Atlas of gastrointestinal surgery:
Pancreas”. 2 ed., Vol. 1, pp. 284-305. BC Decker.

[11] G. Srikanth, N. Shetty, and D. Dubey, “Single incision laparoscopic
distal pancreatectomy with splenectomy for neuroendocrine tumor of the
tail of pancreas,” Journal of minimal access surgery, vol. 9, no. 3, p. 132,
2013.

[12] T. Mori, N. Abe, M. Sugiyama, and Y. Atomi, “Laparoscopic
hepatobiliary and pancreatic surgery: an overview,” Journal of hepato-
biliary-pancreatic surgery, vol. 9, no. 6, pp. 710-722, 2002.

[13] M. G. M. MD|, B. J. Mohler, M. L. Disc, and A. Lefever, “A virtual
reality surgical trainer for navigation in laparoscopic surgery,” Medicine
Meets Virtual Reality 2001: Outer Space, Inner Space, Virtual Space, vol.
81, p. 171, 2001.

[14] S. Kockara, M. Mete, V. Yip, B. Lee, and K. Aydin, “A soft kinetic data
structure for lesion border detection,” Bioinformatics, vol. 26, no. 12, pp.
i21-i28, 2010.

[15] T. Halic, S. A. Venkata, G. Sankaranarayanan, Z. Lu, W. Ahn, and S. De,
“A software framework for multimodal interactive simulations
(SoFMIS).,” in MMVR, 2011, pp. 213-217.

